A Cesàro-Volterra formula with little regularity
نویسندگان
چکیده
If a symmetric matrix field e of order three satisfies the Saint-Venant compatibility conditions in a simply-connected domain Ω in R, there then exists a displacement field u of Ω with e as its associated linearized strain tensor, i.e., e = 1 2 (∇u + ∇u) in Ω. A classical result, due to Cesàro and Volterra, asserts that, if the field e is sufficiently smooth, the displacement u(x) at any point x ∈ Ω can be explicitly computed as a function of the matrix fields e and CURL e, by means of a path integral inside Ω with endpoint x. We assume here that the components of the field e are only in L(Ω) (as in the classical variational formulation of three-dimensional linearized elasticity), in which case the classical path integral formula of Cesàro and Volterra becomes meaningless. We then establish the existence of a “Cesàro-Volterra formula with little regularity”, which again provides an explicit solution u to the equation e = 1 2 (∇u + ∇u) in this case. We also show how the classical Cesàro-Volterra formula can be recovered from the formula with little regularity when the field e is smooth. Interestingly, our analysis also provides as a by-product a variational problem that satisfies all the assumptions of the Lax-Milgram lemma, and whose solution is precisely the unknown displacement field u. It is also shown how such results may be used in the mathematical analysis of “intrinsic” linearized elasticity, where the linearized strain tensor e (instead of the displacement vector u as is customary) is regarded as the primary unknown. Une formule de Cesàro-Volterra avec peu de régularité. Résumé. Si un champ e de matrices symétriques d’ordre trois vérifie les conditions de compatibilité de Saint-Venant dans un ouvert Ω simplement connexe de R, alors il existe un champ de déplacements u de Ω ayant e comme tenseur linéarisé des déformations associé, i.e., e = 1 2 (∇u + ∇u) dans Ω. Un résultat classique de Cesàro et Volterra affirme que, si le champ e est suffisamment régulier, le déplacement u(x) en chaque point x ∈ Ω peut être calculé explicitement en fonction des champs de matrices e et CURL e, au moyen d’une intégrale curviligne dans Ω ayant x comme extrémité. On suppose ici que les composantes du champ e sont seulement dans L(Ω) (comme dans la formulation variationnelle classique de l’élasticité linéarisée tri-dimensionnelle), auquel cas la formule classique de Cesàro-Volterra n’a plus de sens. On établit alors une “formule de Cesàro-Volterra avec peu de régularité”, qui donne à nouveau une solution explicite u de l’équation e = 1 2 (∇u + ∇u) dans ce cas. On montre aussi comment la formule classique de Cesàro-Volterra peut être retrouvée à partir de la formule “avec peu de régularité” lorsque le champ e est régulier. Il est intéressant de noter que l’un des corollaires de notre analyse est la formulation d’un problème variationnel qui vérifie toutes les hypothèses du lemme de Lax-Milgram, et dont la solution est précisément le champ u. On montre également comment de tels résultats peuvent être utilisés dans l’analyse mathématique de l’élasticité linéarisée “intrinsèque”, où le tenseur linéarisé des déformations e (au lieu du champ de déplacements comme il est usuel) est considéré comme étant l’inconnue principale. ha l-0 03 92 01 2, v er si on 1 5 Ju n 20 09 A CESÀRO-VOLTERRA FORMULA WITH LITTLE REGULARITY 1
منابع مشابه
Stochastic Integration with respect to Volterra processes
We construct the basis of a stochastic calculus for so-called Volterra processes, i.e., processes which are defined as the stochastic integral of a timedependent kernel with respect to a standard Brownian motion. For these processes which are natural generalization of fractional Brownian motion, we construct a stochastic integral and show some of its main properties: regularity with respect to ...
متن کاملRegularity Properties of Some Stochastic Volterra Integrals with Degenerate Kernel
We derive sampleepaths continuity results for some sto-chastic Volterra integrals with degenerate kernel under integrability assumptions on the integrand. Some applications to processes arising in the analysis of the fractional Brownian motion are given. Embeddings of Besov spaces into sets of HHlder continuous functions are the key elements. RRSUMM. Nous montrons la continuitt trajectorielle d...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملRegularity of Solutions to Stochastic Volterra Equations with Infinite Delay
The paper gives necessary and sufficient conditions providing regularity of solutions to stochastic Volterra equations with infinite delay on a ddimensional torus. The harmonic analysis techniques and stochastic integration in function spaces are used.
متن کاملMild solutions and Hölder regularity for stochastic Volterra equations
In the paper stochastic Volterra equations admiting exponentially bounded resolvents are studied. Regularity results for stochastic convolutions arising in those equations are given. The paper provides a natural extension of the C0–semigroup case.
متن کامل